2.1. Movement

1. Here are nine words connected with how we describe movement. Separate the words using a solidus (/). The first one has been done for you.
speed/distancegravitydeceleratemetregradientcalculateequationaccelerate

2. The table below contains nine definitions. Use each word from 1 in the correct space in the table to make a full definitions. Again, the first one has been done for you.

WORD	DEFINITION
An equation is a formula	that shows how two or more quantities are related.
To is a verb	which means to work out a numerical value.
The \quad is a noun	that tells us how steep a graph is.
A ...-	that is a unit of distance.
$\cdots \times$ is a noun	which tells us how far something has moved.
$\square \square \square$ is a noun	which tells us how fast something is moving.
To $\square \square$ is a verb	that means to slow down.
To .a.an is a verb	which means to go faster.
is a noun	which is another word for 'movement'.

3. In the table below, the first column describes how a car is moving. You have to decide whether the car is accelerating, decelerating or moving at constant speed. Tick the correct column.

Description	Constant speed	Accelerating	Decelerating
Moving at a steady speed			
Going faster			
Slowing down			
Travelling at $30 \mathrm{~m} / \mathrm{s}$			
Speeding up			
Coming to a halt			
Increasing speed			
Changing speed from $40 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$			
Travelling 25 m each second			

4. A speed against time graph shows us when an object's speed is changing. The graph below shows how a car's speed changed during a short journey.

For each of the points marked on the graph, state what the graph tells you about the car's speed. Use words and phrases from the table in activity 3 . Do not use the same word or phrase more than once.

A
B
C

D
E \qquad

